Is Intel Setting Up Users For A world Of Hurt?

This is a post series on cyber crime. For more posts click here or the cybercrime tag below.

This is what happens when an engineering “good idea” runs away from you.

e Intel Management Engine (ME) is a subsystem composed of a special 32-bit ARC microprocessor that’s physically located inside the chipset. It is an extra general purpose computer running a firmware blob that is sold as a management system for big enterprise deployments.

When you purchase your system with a mainboard and Intel x86 CPU, you are also buying this hardware add-on: an extra computer that controls the main CPU. This extra computer runs completely out-of-band with the main x86 CPU meaning that it can function totally independently even when your main CPU is in a low power state like S3 (suspend).

On some chipsets, the firmware running on the ME implements a system called Intel’s Active Management Technology (AMT). This is entirely transparent to the operating system, which means that this extra computer can do its job regardless of which operating system is installed and running on the main CPU.

The purpose of AMT is to provide a way to manage computers remotely (this is similar to an older system called “Intelligent Platform Management Interface” or IPMI, but more powerful). To achieve this task, the ME is capable of accessing any memory region without the main x86 CPU knowing about the existence of these accesses. It also runs a TCP/IP server on your network interface and packets entering and leaving your machine on certain ports bypass any firewall running on your system.

While AMT can be a great value-add, it has several troubling disadvantages. ME is classified by security researchers as “Ring -3”. Rings of security can be defined as layers of security that affect particular parts of a system, with a smaller ring number corresponding to an area closer to the hardware. For example, Ring 3 threats are defined as security threats that manifest in “userspace” mode. Ring 0 threats occur in “kernel” level, Ring -1 threats occur in a “hypervisor” level, one level lower than the kernel, while Ring -2 threats occur in a special CPU mode called “SMM” mode. SMM stands for System-Management-Mode, a special mode that Intel CPUs can be put into that runs a separately defined chunk of code. If attackers can modify the SMM code and trigger the mode, they can get arbitrary execution of code on a CPU.

Although the ME firmware is cryptographically protected with RSA 2048, researchers have been able to exploit weaknesses in the ME firmware and take partial control of the ME on early models. This makes ME a huge security loophole, and it has been called a very powerful rootkit mechanism. Once a system is compromised by a rootkit, attackers can gain administration access and undetectably attack the computer.

On systems newer than the Core2 series, the ME cannot be disabled. Intel systems that are designed to have ME but lack ME firmware (or whose ME firmware is corrupted) will refuse to boot, or will shut-down shortly after booting.
There is no way for the x86 firmware or operating system to disable ME permanently. Intel keeps most details about ME absolutely secret. There is absolutely no way for the main CPU to tell if the ME on a system has been compromised, and no way to “heal” a compromised ME. There is also no way to know if malicious entities have been able to compromise ME and infect systems.

A large portion of ME’s security model is “security through obscurity”, a practice that many researchers view as the worst type of security. If ME’s secrets are compromised (and they will eventually be compromised by either researchers or malicious entities), then the entire ME security model will crumble, exposing every recent Intel system to the worst rootkits imaginable.

Around 2013, we figured out some of the nitty-gritty details regarding how the ME firmware was packaged up into a blob. The ME firmware is verified by a secret boot ROM embedded in the chipset that first checks that the SHA256 checksum of the public key matches the one from the factory, and then verifies the RSA signature of the firmware payload by recalculating it and comparing to the stored signature. This means that there is no obvious way to bypass the signature checking, since the checking is done by code stored in a ROM buried in silicon, even though we have the public key and signature. However, there still might be an exploitable bug in the ROM bootloader.

http://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html

Sometimes an engineering idea needs to see the light of day before it leaves the factory.  Building a vulnerability into the chipset like this is one of those things that is just pain stupid.  Is Intel really going to take responsibility for the bricked computers, stolen data and upset users that somebody taking advantage of this could cause. Having a rootkit hit you is worse than a root canal.  This is the rootkit from hell because yo can never get rid of it.

Advertisements

One comment

  1. penneyvanderbilt · June 16, 2016

    Reblogged this on KCJones.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s